¢ Random Toolkit ¢

Welcome to Random Toolkit! This asset provides a number of tools and benefits for you
to use in your games.

1. It implements 2 new random number generators which improve upon Unity’s built in
one.
a. Xorshiftl1204* and Mersenne Twister.

2. It provides a large number of improved and new methods for utilizing randomness.
a. Randomized array and list elements, weighted randomness, colors, points in
a range of 3D and 2D shapes, and uniform rotations.

3. An editor window to implement randomness in your workflow.
a. Offsetting the position, rotation, and scale of selected GameObjects.

Quick Start Guide 2
Intro to Random Number Generators 3
Comparing Generators 3
Terminology 4
New Number Generators 5
Xorshiftl1e24* 5
Mersenne Twister 5
Scripting API 6
State Serialization 6
Range 6
Weighted Values 7
Array Methods 7
List Methods 8
Vectors 8
Colors 10
Rotation 11
Editor Window 12
Demos 13
Random Position Offset 13
Random Points Inside 13
Random Points Inside 2D 14
Help 15



Quick Start Guide

If you’re looking to jump into using Random Toolkit, just follow these steps.

1. First, make sure you are using the RandomToolkit library.

UnityEngine;
RandomToolkit;

2. Next, create your random number generator object. This is where we’ll pull
random numbers from and access the range of functions as listed in the Scripting
API section.

Xorshift1024* - a more varied and strong rng algorithm.

. Mersenne Twister - a more varied and strong rng algorithm.

. Unity - Xorshift128*, which Unity’s rng is a variation of.

. System - a wrapper for System.Random.

Q N O w

RTXorshiftle24star rnge = RTXorshift1e24star(123);
RTMersenneTwister rngil RTMersenneTwister(123);

RTUnity rng2 RTUnity (123, 456);
RTSystem rng3 = RTSystem(123);

3. Here are some quick functions to get you started.

rng.NextFloat();

rng.Range(30, 180);

rng.Seed(10983);




Intro to Random Number Generators

You may be thinking: why do I need a different random number generator? Or: how does
one even work? Let’s go over how these RNG’s work, and some common terminology you
might come across.

1. Start with a seed
e The RNG begins with an initial number called a seed.
e Think of it like planting a seed in the ground: from the same seed, you
always get the same plant.
e In RNG terms: if you start with the same seed, you get the same sequence of
random numbers.

2. Use a formula
e The RNG applies a mathematical formula to the seed to get the next number.
e This formula usually involves things like:
0 Multiplying the current number.
o Adding another number.
o Taking the remainder after dividing (this keeps the number from getting
too big).

3. Produce the output
e After applying the formula, the RNG:
o Keeps the new number to use as the next seed.
o Gives you part (or all) of that number as the random number.

4. Repeat
e Every time you ask for a new random number, the RNG:
1. Uses the last number as the new seed.
2. Runs it through the formula again.
3. Gives you the next number.

Comparing Generators

Here are the different RNG’s that are implemented in Random Toolkit:

UnityEngine.Random 128 bits 2128 19 Unity uses a variant of the Xorshift128
RNG.

System.Random 48 bits 231 This is a Linear Congruential Generator
(LCG).

Xorshift1024* 1024 bits 210249 Very long period, good quality.

Mersenne Twister 2.5 KB 2199379 Very long period, large state size, good

quality.



Terminology

State size? Period? What do those things mean? Let’s go over some terminology:

PRNG

RNG - Random number generator.

Seed - The initial number you give the RNG to start the sequence.

Sequence - The ordered list of numbers an RNG produces after it’s been seeded.
State - The internal memory the RNG keeps track of to know where it is in the
sequence.

State Size - The amount of data needed to produce each next number.

Period - The number of random numbers an RNG can generate before it repeats the
same sequence.

Pseudorandom Number Generator (PRNG) - A deterministic algorithm that produces
numbers which look random.

Linear Congruential Generator (LCG) - One of the simplest PRNG’s. It’s fast but
has poor statistical quality, and a short period.

Families:

Xorshift - Uses bitwise XOR and shifts.

Xoshiro - Improved successors to Xorshift.

PCG - Uses small state and permutation for good distribution.
WELL - A family designed to improve on MT.
Philox - Counter-based RNG suitable for parallel computing.

Mersenne Twister - Long period and good statistical quality.



New Number Generators

Random Toolkit features 4 different RNG’s for you to use in your projects.

The first 2: RTUnity and RTSystem, are essentially wrappers for the existing RNG’s you
have access to.
e An important difference being, RTUnity is a rewrite of Unity’s RNG, utilizing
the Xorshift128* algorithm.

That leaves RTXorshiftl1024Star and RTMersenneTwister.

Xorshift1024*
Xorshift1024* 1024 bits 2102419 Very long period, good quality.

This PNRG uses bitwise XOR and shift operations to produce sequences of random
numbers.
e The state size is quite large at 1024 bits. That’s 700% larger than Unity’s, but
since we’re working with bits here, it’s not much in the grand scheme of things.

e The period is also very large, a number with 309 digits. It’s safe to say you’ll
never get around to repeating the sequence.

RTXorshift1024Star(123);

Mersenne Twister

Mersenne Twister 2.5 KB 2199379 Very long period, large state size, good
quality.

This PNRG uses bitwise XOR and shift operations to produce sequences of random
numbers.
e The state size is very large at 2.5 KB. That’s 160,000% larger than Unity’s, but
since we’re still working in only a couple KB’s here, it’s no worry.

e The period is also very large, a number with 6002 digits. You’ll never get
around to repeating the sequence.




Scripting API

uint NextUInt ()
Returns the next unsigned integer in the sequence.

int NextInt ()
Returns the next integer in the sequence.

float NextFloat ()
Returns the next float in the sequence.

double NextDouble ()
Returns the next unsigned integer in the sequence.

ulong NextULong ()
Returns the next ulong in the sequence.

State Serialization

byte[] SerializeState()
Serializes the RNG's state into a byte array, which can be saved to disk or sent over
a network.

void LoadState(byte[] serializedState)
Deserializes a byte array into an RNG state which is then applied.

Range

int Range (int min, int max)
Returns a random integer value between the min and max, with the max being exclusive.

float Range (float min, float max)
Returns a random float value between the min and max.

double RangeDouble (double min, double max)
Returns a random double value between the min and max.

long RangelLong (long min, long max)
Returns a random long value between the min and max.

Vector3 RangeVector3 (Vector3 min, Vector3 max)
Returns a random Vector3 value between the min and max.

Vector2 RangeVector2 (Vector2 min, Vector2 max)
Returns a random Vector2 value between the min and max.



Weighted Values

float WeightedValue (AnimationCurve curve)
Same as the NextFloat() function, but weighted against an animation curve.

int WeightedInt (AnimationCurve curve, int exclusiveMax)
Returns a random integer from © to exclusiveMax - 1, but weighted against an animation
curve.

int WeightedInt (int[] weights)
Returns a random integer from © to weights.Length - 1, weighted against the value of
each element. e.g. with [1, 3, 44, 5], element 2 will return the majority of the time.

int WeightedInt (List<int> weights)
Returns a random integer from @ to weights.Count - 1, weighted against the value of
each element.

int WeightedInt (float[] weights)
Returns a random integer from @ to weights.Count - 1, weighted against the value of
each element.

int WeightedInt (List<float> weights)
Returns a random integer from © to weights.Count - 1, weighted against the value of
each element.

Array Methods

void Shuffle<T> (T[] array)
Randomizes the order of array elements.

T RandomElement<T> (T[] array)
Returns a random element from an array.

T RandomElement<T> (T[] array, int[] weights)
Returns a random element from an array with weighted selection.

T RandomElement<T> (T[] array, AnimationCurve weightCurve)
Returns a random element from an array with weighted selection.

T[] RandomElements<T> (T[] array, int count)
Returns an array (length of count) of randomly selected elements.

T[] RandomElements<T> (T[] array, int[] weights, int count)
Returns an array (length of count) of randomly selected elements with weighted
selection.

T[] RandomElements<T> (T[] array, AnimationCurve weightCurve, int count)
Returns an array (length of count) of randomly selected elements with weighted
selection.



T[] RandomElementsUnique<T> (T[] array, int count)
Returns an array (length of count) of randomly selected, non-repeating elements.

List Methods

void Shuffle<T> (List<T> list)
Randomizes the order of list elements.

T RandomElement<T> (List<T> list)
Returns a random element from a list.

T RandomElement<T> (List<T> list, int[] weights)
Returns a random element from a list with weighted selection.

T RandomElement<T> (List<T> list, AnimationCurve weightCurve)
Returns a random element from a list with weighted selection.

List<T> RandomElements<T> (List<T> list, int count)
Returns a list (length of count) of randomly selected elements.

List<T> RandomElements<T>(List<T> list, int[] weights, int count)
Returns a list (length of count) of randomly selected elements with weighted
selection.

List<T> RandomElements<T> (List<T> list, AnimationCurve weightCurve, int count)
Returns a list (length of count) of randomly selected elements with weighted
selection.

List<T> RandomElementsUnique<T> (List<T> list, int count)
Returns a list (length of count) of randomly selected, non-repeating elements.

Vectors

Vector3 DirectionVectors3
Returns random normalized Vector3 direction.

Vector2 DirectionVector2
Returns random normalized Vector2 direction.

Vector3 InsideUnitSphere
Returns a random point in a sphere with a radius of 1.

Vector2 InsideUnitCircle
Returns a random point in a circle with a radius of 1.

Vector3 InsideUnitCube
Returns a random point in a cube, with a max width and height of 2, and with the
origin at the center.



Vector2 InsideUnitSquare
Returns a random point in a square, with a max width and height of 2, and with the
origin at the center.

Vector3 InsideCube (float xSize, float ySize, float zSize, Vector3 direction)
Returns a random point in a cube, with a given x, y, and z size, as well as a
direction. The origin is as the center of the cube.

Vector3 InsideCube (float xSize, float ySize, float zSize)
Returns a random point in a cube, with a given x, y, and z size. The origin is as the
center of the cube.

Vector3 InsideCone (float height, float radius, Vector3 direction)
Returns a random point within a cone of the specified dimensions aligned along a
direction. The origin is at the base of the cone.

Vector3 InsideCone (float height, float radius)
Returns a random point within a cone of the specified dimensions. The origin is at the
base of the cone.

Vector3 InsideCylinder (float height, float radius, Vector3 direction)
Returns a random point within a cylinder of the specified dimensions aligned along a
direction. The origin is at the center of the cylinder.

Vector3 InsideCylinder (float height, float radius)
Returns a random point within a cylinder of the specified dimensions. The origin is at
the center of the cylinder.

Vector2 InsideCone2D (float length, float height)
Returns a random point within a cone of the specified dimensions. The origin is at the
point of the cone.

Vector2 InsideCone2D (float length, float height, float rotationDegrees)
Returns a random point within a cone of the specified dimensions aligned along a
rotation in degrees. The origin is at the point of the cone.

Vector3 InsideCapsule (float height, float radius, Vector3 direction)
Returns a random point within a capsule of the specified dimensions aligned along a
direction. The origin is at the center of the capsule.

Vector3 InsideCapsule (float height, float radius)
Returns a random point within a capsule of the specified dimensions. The origin is at
the center of the capsule.

Vector2 InsideCapsule2D (float height, float width, float rotationDegrees)
Returns a random point within a 2D capsule of the specified dimensions aligned along a
rotation in degrees. The origin is at the center of the capsule.



Vector2 InsideCapsule2D (float height, float radius)
Returns a random point within a 2D capsule of the specified dimensions. The origin is
at the center of the capsule.

Vector2 InsideConvextPolygon2D (Vector2[] vertices, float rotationDegrees)
Returns a random point within a 2D array of vertices - e.g. PolygonCollider2D. Has an
extra parameter for rotation.

Vector2 InsideConvextPolygon2D (Vector2[] vertices)
Returns a random point within a 2D array of vertices - e.g. PolygonCollider2D.

Vector2 InsideBox2D (float width, float height, float rotationDegrees)
Returns a point inside of a 2D box, given a width, height, and rotation. The origin is
at the center of the box.

Vector2 InsideBox2D (float width, float height)
Returns a point inside of a 2D box, given a width and height. The origin is at the
center of the box.

Vector3 InsideBounds (Bounds bounds)
Returns a random point within a bounding box.

Vector3 InsideCameraFrustum (Camera cam)
Returns a random point within a given camera's view frustum.

Colors

Color ColorRGB ()
Returns a random color with an alpha of 1.

Color ColorRGBA ()
Returns a random color.

Color ColorFromGradient (Gradient gradient)
Returns a random color from a gradient.

Color ColorFromTexture (Texture2D texture)
Returns the color of a random pixel from a texture.

string ColorHex ()
Returns a random hex color, ignoring the alpha.

string ColorHexAlpha ()
Returns a random hex color, including the alpha.

Color ColorHsV ()
Returns a random HSV color.



Color ColorHSV (float hueMin, float hueMax)
Returns a random HSV color.

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float
saturationMax)
Returns a random HSV color.

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float
saturationMax, float valueMin, float valueMax)
Returns a random HSV color.

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float

saturationMax, float valueMin, float valueMax, float alphaMin, float alphaMax)
Returns a random HSV color.

Rotation

float RandomDegrees
Returns a random number between 0.0 and 360.0.

float RandomRadians
Returns a number between 0.0 and 6.28318530718 (pi * 2).

Quaternion RandomUniformQuaternion
Returns a random Quaternion with uniform distribution.



Editor Window

Random Toolkit features an editor window for you to use (Window > Random Toolkit).

The main aspect is Scene Tools, which allows you to apply a random Transform offset to
all selected GameObjects in the scene.

e Enable position/rotation/scale, then set the min and max for each axis.

® Press Randomize Offset to apply the random offset.

Generators

Randomize Offset

There are three other pages in the editor window:
e Generators - Stats of the 4 generators featured in this toolkit.
e Test - Select an RNG and test out its capabilities.
e Help - Useful links.



Demos

Since Random Toolkit focuses mainly on code, I’ve included some demo scenes soO you can
get a visual idea of what’s going on.

Random Position Offset

Located: RandomToolkit/Demos/Random Position Offset/RT_RandomPositionOffset.unity

This demo showcases the Random Toolkit editor window capabilities. Simply follow the
on-screen instructions to randomly offset the cubes.

1. Open Window > Random Toolkit

2. Go to the Scene Tools tab

3. Set the properties you wish to offset
4. Select the GameObjects

5. Click Randomize Offset

Random Points Inside

Located: RandomToolkit/Demos/Random Points Inside/RT_RandomPointsInside.unity

This demo showcases the ability to generate random points in a range of shapes. Press
the number keys to spawn a large amount of points at a time, and use the rotation
slider to see that these random points can also adjust based on that.

This demo showcases how you can uniformly
generate points in different shapes.

[1] Sphere

[2] Cube

[3] Capsule

[4] Cone

[C] Clear Points

Rotate @ e———




Random Points Inside 2D
Located: RandomToolkit/Demos/Random Points Inside 2D/RT_RandomPointsInside2D.unity
This demo showcases the ability to generate random points in a range of 2D shapes.

Press the number keys to spawn a large amount of points at a time, and use the
rotation slider to see that these random points can also adjust based on that.

This demo showcases how you can uniformly
generate points in different 2D shapes.

[1] Circle

[2] Square

[3] Capsule

[4] Cone

[5] Polygon

[C] Clear Points

ROtate e me—




Help

If you have any issues with the toolkit or wish further elaboration on anything, feel

free to contact me here:

buckleydaniell@l@gmail.com

Here are some of my other assets you might Like:

Time Traveler

Time Traveler allows you to pause,
rewind, and playback time dynamically 1in
your game.

-

Mini Golf - Complete Game

A complete 3D mini golf game with varying

environments and over 100 parts to
construct your courses.

Hole 4
Par 4
Stroke 3

BONTROL TiItlE DZNAMNIGALLY? = BULLY FOR BAMNEPLAY

3D Wave Shooter

Shoot and kill enemies with unique
weapons and effects. Purchase new weapons
and upgrades from the shop between
rounds, and enjoy the systematic gameplay
at hand.

-

——//—_’—ﬁlda

A

Space Wave Shooter

Fight through waves of enemies,
purchasing items and upgrades in-between
rounds. This 1is a complete project with a
game ready to be expanded upon and
published.

Space Wave Shooter



mailto:buckleydaniel101@gmail.com
https://assetstore.unity.com/packages/templates/systems/time-traveler-324505
https://assetstore.unity.com/packages/templates/packs/mini-golf-complete-game-325585
https://assetstore.unity.com/packages/templates/packs/3d-wave-shooter-133749
https://assetstore.unity.com/packages/templates/packs/space-wave-shooter-150451

	🎲 Random Toolkit 🎲 
	 
	Quick Start Guide 
	Intro to Random Number Generators 
	1.​Start with a seed 
	2.​Use a formula 
	3.​Produce the output 
	4.​Repeat 
	Comparing Generators 
	Terminology 

	 
	New Number Generators 
	Xorshift1024* 
	Mersenne Twister 

	 
	Scripting API 
	uint NextUInt () 
	int NextInt () 
	float NextFloat () 
	double NextDouble () 
	ulong NextULong () 
	State Serialization 
	byte[] SerializeState() 
	void LoadState(byte[] serializedState) 

	Range 
	int Range (int min, int max) 
	float Range (float min, float max) 
	double RangeDouble (double min, double max) 
	long RangeLong (long min, long max) 
	Vector3 RangeVector3 (Vector3 min, Vector3 max) 
	Vector2 RangeVector2 (Vector2 min, Vector2 max) 

	Weighted Values 
	float WeightedValue (AnimationCurve curve) 
	int WeightedInt (AnimationCurve curve, int exclusiveMax) 
	int WeightedInt (int[] weights) 
	int WeightedInt (List<int> weights) 
	int WeightedInt (float[] weights) 
	int WeightedInt (List<float> weights) 

	Array Methods 
	void Shuffle<T> (T[] array) 
	T RandomElement<T> (T[] array) 
	T RandomElement<T> (T[] array, int[] weights) 
	T RandomElement<T> (T[] array, AnimationCurve weightCurve) 
	T[] RandomElements<T> (T[] array, int count) 
	T[] RandomElements<T> (T[] array, int[] weights, int count) 
	T[] RandomElements<T> (T[] array, AnimationCurve weightCurve, int count) 
	T[] RandomElementsUnique<T> (T[] array, int count) 

	List Methods 
	void Shuffle<T> (List<T> list) 
	T RandomElement<T> (List<T> list) 
	T RandomElement<T> (List<T> list, int[] weights) 
	T RandomElement<T> (List<T> list, AnimationCurve weightCurve) 
	List<T> RandomElements<T> (List<T> list, int count) 
	List<T> RandomElements<T>(List<T> list, int[] weights, int count) 
	List<T> RandomElements<T> (List<T> list, AnimationCurve weightCurve, int count) 
	List<T> RandomElementsUnique<T> (List<T> list, int count) 

	Vectors 
	Vector3 DirectionVector3 
	Vector2 DirectionVector2 
	Vector3 InsideUnitSphere 
	Vector2 InsideUnitCircle 
	Vector3 InsideUnitCube 
	Vector2 InsideUnitSquare 
	Vector3 InsideCube (float xSize, float ySize, float zSize, Vector3 direction) 
	Vector3 InsideCube (float xSize, float ySize, float zSize) 
	Vector3 InsideCone (float height, float radius, Vector3 direction) 
	Vector3 InsideCone (float height, float radius) 
	Vector3 InsideCylinder (float height, float radius, Vector3 direction) 
	Vector3 InsideCylinder (float height, float radius) 
	Vector2 InsideCone2D (float length, float height) 
	Vector2 InsideCone2D (float length, float height, float rotationDegrees) 
	Vector3 InsideCapsule (float height, float radius, Vector3 direction) 
	Vector3 InsideCapsule (float height, float radius) 
	Vector2 InsideCapsule2D (float height, float width, float rotationDegrees) 
	Vector2 InsideCapsule2D (float height, float radius) 
	Vector2 InsideConvextPolygon2D (Vector2[] vertices, float rotationDegrees) 
	Vector2 InsideConvextPolygon2D (Vector2[] vertices) 
	Vector2 InsideBox2D (float width, float height, float rotationDegrees) 
	Vector2 InsideBox2D (float width, float height) 
	Vector3 InsideBounds (Bounds bounds) 
	Vector3 InsideCameraFrustum (Camera cam) 

	Colors 
	Color ColorRGB () 
	Color ColorRGBA () 
	Color ColorFromGradient (Gradient gradient) 
	Color ColorFromTexture (Texture2D texture) 
	string ColorHex () 
	string ColorHexAlpha () 
	Color ColorHSV () 
	Color ColorHSV (float hueMin, float hueMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax, float valueMin, float valueMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax, float valueMin, float valueMax, float alphaMin, float alphaMax) 

	Rotation 
	float RandomDegrees 
	float RandomRadians 
	Quaternion RandomUniformQuaternion 


	 
	Editor Window 
	Demos 
	Random Position Offset 
	Random Points Inside 
	Random Points Inside 2D 

	 
	Help 

