
🎲 Random Toolkit 🎲 
 

Welcome to Random Toolkit! This asset provides a number of tools and benefits for you 

to use in your games. 

 

1.​ It implements 2 new random number generators which improve upon Unity’s built in 
one. 

a.​ Xorshift1204* and Mersenne Twister. 
 

2.​ It provides a large number of improved and new methods for utilizing randomness. 
a.​ Randomized array and list elements, weighted randomness, colors, points in 

a range of 3D and 2D shapes, and uniform rotations. 

 

3.​ An editor window to implement randomness in your workflow. 
a.​ Offsetting the position, rotation, and scale of selected GameObjects. 

 

 

Quick Start Guide​ 2 
Intro to Random Number Generators​ 3 

Comparing Generators​ 3 
Terminology​ 4 

New Number Generators​ 5 
Xorshift1024*​ 5 
Mersenne Twister​ 5 

Scripting API​ 6 

State Serialization​ 6 

Range​ 6 

Weighted Values​ 7 

Array Methods​ 7 

List Methods​ 8 

Vectors​ 8 

Colors​ 10 

Rotation​ 11 

Editor Window​ 12 

Demos​ 13 

Random Position Offset​ 13 

Random Points Inside​ 13 

Random Points Inside 2D​ 14 

Help​ 15 

 



Quick Start Guide 
If you’re looking to jump into using Random Toolkit, just follow these steps. 

 

1.​ First, make sure you are using the RandomToolkit library. 
 

 

 

2.​ Next, create your random number generator object. This is where we’ll pull 
random numbers from and access the range of functions as listed in the Scripting 

API section. 

a.​ Xorshift1024* - a more varied and strong rng algorithm. 
b.​ Mersenne Twister - a more varied and strong rng algorithm. 
c.​ Unity - Xorshift128*, which Unity’s rng is a variation of. 
d.​ System - a wrapper for System.Random. 

 

 

 

3.​ Here are some quick functions to get you started. 
 

 



Intro to Random Number Generators 
You may be thinking: why do I need a different random number generator? Or: how does 

one even work? Let’s go over how these RNG’s work, and some common terminology you 

might come across. 

1.​Start with a seed 
●​ The RNG begins with an initial number called a seed. 

●​ Think of it like planting a seed in the ground: from the same seed, you 

always get the same plant. 

●​ In RNG terms: if you start with the same seed, you get the same sequence of 

random numbers.​
 

2.​Use a formula 
●​ The RNG applies a mathematical formula to the seed to get the next number. 

●​ This formula usually involves things like: 

○​ Multiplying the current number. 

○​ Adding another number. 

○​ Taking the remainder after dividing (this keeps the number from getting 

too big).​
 

3.​Produce the output 
●​ After applying the formula, the RNG: 

○​ Keeps the new number to use as the next seed. 

○​ Gives you part (or all) of that number as the random number.​
 

4.​Repeat 
●​ Every time you ask for a new random number, the RNG: 

1.​ Uses the last number as the new seed. 
2.​ Runs it through the formula again. 
3.​ Gives you the next number. 

 

Comparing Generators 

Here are the different RNG’s that are implemented in Random Toolkit: 

Name State Size Period Notes 

UnityEngine.Random 128 bits 2¹²⁸−1 Unity uses a variant of the Xorshift128 
RNG. 

System.Random 48 bits 2³¹ This is a Linear Congruential Generator 
(LCG). 

Xorshift1024* 1024 bits 2¹⁰²⁴−1 Very long period, good quality. 

Mersenne Twister 2.5 KB 2¹⁹⁹³⁷−1 Very long period, large state size, good 
quality. 



Terminology 

State size? Period? What do those things mean? Let’s go over some terminology: 

 

●​ RNG - Random number generator. 

●​ Seed - The initial number you give the RNG to start the sequence. 

●​ Sequence - The ordered list of numbers an RNG produces after it’s been seeded. 

●​ State - The internal memory the RNG keeps track of to know where it is in the 

sequence. 

●​ State Size - The amount of data needed to produce each next number. 

●​ Period - The number of random numbers an RNG can generate before it repeats the 

same sequence. 

●​ Pseudorandom Number Generator (PRNG) - A deterministic algorithm that produces 

numbers which look random. 

●​ Linear Congruential Generator (LCG) - One of the simplest PRNG’s. It’s fast but 

has poor statistical quality, and a short period. 

 

PRNG Families: 

 

●​ Xorshift - Uses bitwise XOR and shifts. 

●​ Xoshiro - Improved successors to Xorshift. 

●​ PCG - Uses small state and permutation for good distribution. 

●​ WELL - A family designed to improve on MT. 

●​ Philox - Counter-based RNG suitable for parallel computing. 

●​ Mersenne Twister - Long period and good statistical quality. 

 

 



New Number Generators 
Random Toolkit features 4 different RNG’s for you to use in your projects. 

 

The first 2: RTUnity and RTSystem, are essentially wrappers for the existing RNG’s you 

have access to. 

●​ An important difference being, RTUnity is a rewrite of Unity’s RNG, utilizing 

the Xorshift128* algorithm. 

 

That leaves RTXorshift1024Star and RTMersenneTwister. 

Xorshift1024* 

Name State Size Period Notes 

Xorshift1024* 1024 bits 2¹⁰²⁴−1 Very long period, good quality. 

 

This PNRG uses bitwise XOR and shift operations to produce sequences of random 

numbers. 

●​ The state size is quite large at 1024 bits. That’s 700% larger than Unity’s, but 

since we’re working with bits here, it’s not much in the grand scheme of things. 

●​ The period is also very large, a number with 309 digits. It’s safe to say you’ll 

never get around to repeating the sequence. 

 

Mersenne Twister 

Name State Size Period Notes 

Mersenne Twister 2.5 KB 2¹⁹⁹³⁷−1 Very long period, large state size, good 
quality. 

 

This PNRG uses bitwise XOR and shift operations to produce sequences of random 

numbers. 

●​ The state size is very large at 2.5 KB. That’s 160,000% larger than Unity’s, but 

since we’re still working in only a couple KB’s here, it’s no worry. 

●​ The period is also very large, a number with 6002 digits. You’ll never get 

around to repeating the sequence. 

 

 



Scripting API 

uint NextUInt () 
Returns the next unsigned integer in the sequence. 

int NextInt () 
Returns the next integer in the sequence. 

float NextFloat () 
Returns the next float in the sequence. 

double NextDouble () 
Returns the next unsigned integer in the sequence. 

ulong NextULong () 
Returns the next ulong in the sequence. 

State Serialization 

byte[] SerializeState() 
Serializes the RNG's state into a byte array, which can be saved to disk or sent over 

a network. 

void LoadState(byte[] serializedState) 
Deserializes a byte array into an RNG state which is then applied. 

Range 

int Range (int min, int max) 
Returns a random integer value between the min and max, with the max being exclusive. 

float Range (float min, float max) 
Returns a random float value between the min and max. 

double RangeDouble (double min, double max) 
Returns a random double value between the min and max. 

long RangeLong (long min, long max) 
Returns a random long value between the min and max. 

Vector3 RangeVector3 (Vector3 min, Vector3 max) 
Returns a random Vector3 value between the min and max. 

Vector2 RangeVector2 (Vector2 min, Vector2 max) 
Returns a random Vector2 value between the min and max. 



Weighted Values 

float WeightedValue (AnimationCurve curve) 
Same as the NextFloat() function, but weighted against an animation curve. 

int WeightedInt (AnimationCurve curve, int exclusiveMax) 
Returns a random integer from 0 to exclusiveMax - 1, but weighted against an animation 

curve. 

int WeightedInt (int[] weights) 
Returns a random integer from 0 to weights.Length - 1, weighted against the value of 

each element. e.g. with [1, 3, 44, 5], element 2 will return the majority of the time. 

int WeightedInt (List<int> weights) 
Returns a random integer from 0 to weights.Count - 1, weighted against the value of 

each element. 

int WeightedInt (float[] weights) 
Returns a random integer from 0 to weights.Count - 1, weighted against the value of 

each element. 

int WeightedInt (List<float> weights) 
Returns a random integer from 0 to weights.Count - 1, weighted against the value of 

each element. 

Array Methods 

void Shuffle<T> (T[] array) 
Randomizes the order of array elements. 

T RandomElement<T> (T[] array) 
Returns a random element from an array. 

T RandomElement<T> (T[] array, int[] weights) 
Returns a random element from an array with weighted selection. 

T RandomElement<T> (T[] array, AnimationCurve weightCurve) 
Returns a random element from an array with weighted selection. 

T[] RandomElements<T> (T[] array, int count) 
Returns an array (length of count) of randomly selected elements. 

T[] RandomElements<T> (T[] array, int[] weights, int count) 
Returns an array (length of count) of randomly selected elements with weighted 

selection. 

T[] RandomElements<T> (T[] array, AnimationCurve weightCurve, int count) 
Returns an array (length of count) of randomly selected elements with weighted 

selection. 



T[] RandomElementsUnique<T> (T[] array, int count) 
Returns an array (length of count) of randomly selected, non-repeating elements. 

List Methods 

void Shuffle<T> (List<T> list) 
Randomizes the order of list elements. 

T RandomElement<T> (List<T> list) 
Returns a random element from a list. 

T RandomElement<T> (List<T> list, int[] weights) 
Returns a random element from a list with weighted selection. 

T RandomElement<T> (List<T> list, AnimationCurve weightCurve) 
Returns a random element from a list with weighted selection. 

List<T> RandomElements<T> (List<T> list, int count) 
Returns a list (length of count) of randomly selected elements. 

List<T> RandomElements<T>(List<T> list, int[] weights, int count) 
Returns a list (length of count) of randomly selected elements with weighted 

selection. 

List<T> RandomElements<T> (List<T> list, AnimationCurve weightCurve, int count) 
Returns a list (length of count) of randomly selected elements with weighted 

selection. 

List<T> RandomElementsUnique<T> (List<T> list, int count) 
Returns a list (length of count) of randomly selected, non-repeating elements. 

Vectors 

Vector3 DirectionVector3 
Returns random normalized Vector3 direction. 

Vector2 DirectionVector2 
Returns random normalized Vector2 direction. 

Vector3 InsideUnitSphere 
Returns a random point in a sphere with a radius of 1. 

Vector2 InsideUnitCircle 
Returns a random point in a circle with a radius of 1. 

Vector3 InsideUnitCube 
Returns a random point in a cube, with a max width and height of 2, and with the 

origin at the center. 



Vector2 InsideUnitSquare 
Returns a random point in a square, with a max width and height of 2, and with the 

origin at the center. 

Vector3 InsideCube (float xSize, float ySize, float zSize, Vector3 direction) 
Returns a random point in a cube, with a given x, y, and z size, as well as a 

direction. The origin is as the center of the cube. 

Vector3 InsideCube (float xSize, float ySize, float zSize) 
Returns a random point in a cube, with a given x, y, and z size. The origin is as the 

center of the cube. 

Vector3 InsideCone (float height, float radius, Vector3 direction) 
Returns a random point within a cone of the specified dimensions aligned along a 

direction. The origin is at the base of the cone. 

Vector3 InsideCone (float height, float radius) 
Returns a random point within a cone of the specified dimensions. The origin is at the 

base of the cone. 

Vector3 InsideCylinder (float height, float radius, Vector3 direction) 
Returns a random point within a cylinder of the specified dimensions aligned along a 

direction. The origin is at the center of the cylinder. 

Vector3 InsideCylinder (float height, float radius) 
Returns a random point within a cylinder of the specified dimensions. The origin is at 

the center of the cylinder. 

Vector2 InsideCone2D (float length, float height) 
Returns a random point within a cone of the specified dimensions. The origin is at the 

point of the cone. 

Vector2 InsideCone2D (float length, float height, float rotationDegrees) 
Returns a random point within a cone of the specified dimensions aligned along a 

rotation in degrees. The origin is at the point of the cone. 

Vector3 InsideCapsule (float height, float radius, Vector3 direction) 
Returns a random point within a capsule of the specified dimensions aligned along a 

direction. The origin is at the center of the capsule. 

Vector3 InsideCapsule (float height, float radius) 
Returns a random point within a capsule of the specified dimensions. The origin is at 

the center of the capsule. 

Vector2 InsideCapsule2D (float height, float width, float rotationDegrees) 
Returns a random point within a 2D capsule of the specified dimensions aligned along a 

rotation in degrees. The origin is at the center of the capsule. 



Vector2 InsideCapsule2D (float height, float radius) 
Returns a random point within a 2D capsule of the specified dimensions. The origin is 

at the center of the capsule. 

Vector2 InsideConvextPolygon2D (Vector2[] vertices, float rotationDegrees) 
Returns a random point within a 2D array of vertices - e.g. PolygonCollider2D. Has an 

extra parameter for rotation. 

Vector2 InsideConvextPolygon2D (Vector2[] vertices) 
Returns a random point within a 2D array of vertices - e.g. PolygonCollider2D. 

Vector2 InsideBox2D (float width, float height, float rotationDegrees) 
Returns a point inside of a 2D box, given a width, height, and rotation. The origin is 

at the center of the box. 

Vector2 InsideBox2D (float width, float height) 
Returns a point inside of a 2D box, given a width and height. The origin is at the 

center of the box. 

Vector3 InsideBounds (Bounds bounds) 
Returns a random point within a bounding box. 

Vector3 InsideCameraFrustum (Camera cam) 
Returns a random point within a given camera's view frustum. 

Colors 

Color ColorRGB () 
Returns a random color with an alpha of 1. 

Color ColorRGBA () 
Returns a random color. 

Color ColorFromGradient (Gradient gradient) 
Returns a random color from a gradient. 

Color ColorFromTexture (Texture2D texture) 
Returns the color of a random pixel from a texture. 

string ColorHex () 
Returns a random hex color, ignoring the alpha. 

string ColorHexAlpha () 
Returns a random hex color, including the alpha. 

Color ColorHSV () 
Returns a random HSV color. 



Color ColorHSV (float hueMin, float hueMax) 
Returns a random HSV color. 

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float 

saturationMax) 
Returns a random HSV color. 

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float 

saturationMax, float valueMin, float valueMax) 
Returns a random HSV color. 

Color ColorHSV (float hueMin, float hueMax, float saturationMin, float 

saturationMax, float valueMin, float valueMax, float alphaMin, float alphaMax) 
Returns a random HSV color. 

Rotation 

float RandomDegrees 
Returns a random number between 0.0 and 360.0. 

float RandomRadians 
Returns a number between 0.0 and 6.28318530718 (pi * 2). 

Quaternion RandomUniformQuaternion 
Returns a random Quaternion with uniform distribution. 

 



Editor Window 
Random Toolkit features an editor window for you to use (Window > Random Toolkit). 

 

The main aspect is Scene Tools, which allows you to apply a random Transform offset to 

all selected GameObjects in the scene. 

●​ Enable position/rotation/scale, then set the min and max for each axis. 

●​ Press Randomize Offset to apply the random offset. 

 

 

 

There are three other pages in the editor window: 

●​ Generators - Stats of the 4 generators featured in this toolkit. 

●​ Test - Select an RNG and test out its capabilities. 

●​ Help - Useful links. 

 



Demos 
Since Random Toolkit focuses mainly on code, I’ve included some demo scenes so you can 

get a visual idea of what’s going on. 

 

Random Position Offset 

Located: RandomToolkit/Demos/Random Position Offset/RT_RandomPositionOffset.unity 

 

This demo showcases the Random Toolkit editor window capabilities. Simply follow the 

on-screen instructions to randomly offset the cubes. 

 

 

Random Points Inside 

Located: RandomToolkit/Demos/Random Points Inside/RT_RandomPointsInside.unity 

 

This demo showcases the ability to generate random points in a range of shapes. Press 

the number keys to spawn a large amount of points at a time, and use the rotation 

slider to see that these random points can also adjust based on that. 

 

 



Random Points Inside 2D 

Located: RandomToolkit/Demos/Random Points Inside 2D/RT_RandomPointsInside2D.unity 

 

This demo showcases the ability to generate random points in a range of 2D shapes. 

Press the number keys to spawn a large amount of points at a time, and use the 

rotation slider to see that these random points can also adjust based on that. 

 

 

 



Help 
If you have any issues with the toolkit or wish further elaboration on anything, feel 

free to contact me here: buckleydaniel101@gmail.com 

 

Here are some of my other assets you might like: 

 

 

Time Traveler 
 

Time Traveler allows you to pause, 

rewind, and playback time dynamically in 

your game. 

 

 

Mini Golf - Complete Game 
 

A complete 3D mini golf game with varying 

environments and over 100 parts to 

construct your courses. 

 

 

3D Wave Shooter 
 

Shoot and kill enemies with unique 

weapons and effects. Purchase new weapons 

and upgrades from the shop between 

rounds, and enjoy the systematic gameplay 

at hand. 

 

 

Space Wave Shooter 
 

Fight through waves of enemies, 

purchasing items and upgrades in-between 

rounds. This is a complete project with a 

game ready to be expanded upon and 

published. 

 

 

 

mailto:buckleydaniel101@gmail.com
https://assetstore.unity.com/packages/templates/systems/time-traveler-324505
https://assetstore.unity.com/packages/templates/packs/mini-golf-complete-game-325585
https://assetstore.unity.com/packages/templates/packs/3d-wave-shooter-133749
https://assetstore.unity.com/packages/templates/packs/space-wave-shooter-150451

	🎲 Random Toolkit 🎲 
	 
	Quick Start Guide 
	Intro to Random Number Generators 
	1.​Start with a seed 
	2.​Use a formula 
	3.​Produce the output 
	4.​Repeat 
	Comparing Generators 
	Terminology 

	 
	New Number Generators 
	Xorshift1024* 
	Mersenne Twister 

	 
	Scripting API 
	uint NextUInt () 
	int NextInt () 
	float NextFloat () 
	double NextDouble () 
	ulong NextULong () 
	State Serialization 
	byte[] SerializeState() 
	void LoadState(byte[] serializedState) 

	Range 
	int Range (int min, int max) 
	float Range (float min, float max) 
	double RangeDouble (double min, double max) 
	long RangeLong (long min, long max) 
	Vector3 RangeVector3 (Vector3 min, Vector3 max) 
	Vector2 RangeVector2 (Vector2 min, Vector2 max) 

	Weighted Values 
	float WeightedValue (AnimationCurve curve) 
	int WeightedInt (AnimationCurve curve, int exclusiveMax) 
	int WeightedInt (int[] weights) 
	int WeightedInt (List<int> weights) 
	int WeightedInt (float[] weights) 
	int WeightedInt (List<float> weights) 

	Array Methods 
	void Shuffle<T> (T[] array) 
	T RandomElement<T> (T[] array) 
	T RandomElement<T> (T[] array, int[] weights) 
	T RandomElement<T> (T[] array, AnimationCurve weightCurve) 
	T[] RandomElements<T> (T[] array, int count) 
	T[] RandomElements<T> (T[] array, int[] weights, int count) 
	T[] RandomElements<T> (T[] array, AnimationCurve weightCurve, int count) 
	T[] RandomElementsUnique<T> (T[] array, int count) 

	List Methods 
	void Shuffle<T> (List<T> list) 
	T RandomElement<T> (List<T> list) 
	T RandomElement<T> (List<T> list, int[] weights) 
	T RandomElement<T> (List<T> list, AnimationCurve weightCurve) 
	List<T> RandomElements<T> (List<T> list, int count) 
	List<T> RandomElements<T>(List<T> list, int[] weights, int count) 
	List<T> RandomElements<T> (List<T> list, AnimationCurve weightCurve, int count) 
	List<T> RandomElementsUnique<T> (List<T> list, int count) 

	Vectors 
	Vector3 DirectionVector3 
	Vector2 DirectionVector2 
	Vector3 InsideUnitSphere 
	Vector2 InsideUnitCircle 
	Vector3 InsideUnitCube 
	Vector2 InsideUnitSquare 
	Vector3 InsideCube (float xSize, float ySize, float zSize, Vector3 direction) 
	Vector3 InsideCube (float xSize, float ySize, float zSize) 
	Vector3 InsideCone (float height, float radius, Vector3 direction) 
	Vector3 InsideCone (float height, float radius) 
	Vector3 InsideCylinder (float height, float radius, Vector3 direction) 
	Vector3 InsideCylinder (float height, float radius) 
	Vector2 InsideCone2D (float length, float height) 
	Vector2 InsideCone2D (float length, float height, float rotationDegrees) 
	Vector3 InsideCapsule (float height, float radius, Vector3 direction) 
	Vector3 InsideCapsule (float height, float radius) 
	Vector2 InsideCapsule2D (float height, float width, float rotationDegrees) 
	Vector2 InsideCapsule2D (float height, float radius) 
	Vector2 InsideConvextPolygon2D (Vector2[] vertices, float rotationDegrees) 
	Vector2 InsideConvextPolygon2D (Vector2[] vertices) 
	Vector2 InsideBox2D (float width, float height, float rotationDegrees) 
	Vector2 InsideBox2D (float width, float height) 
	Vector3 InsideBounds (Bounds bounds) 
	Vector3 InsideCameraFrustum (Camera cam) 

	Colors 
	Color ColorRGB () 
	Color ColorRGBA () 
	Color ColorFromGradient (Gradient gradient) 
	Color ColorFromTexture (Texture2D texture) 
	string ColorHex () 
	string ColorHexAlpha () 
	Color ColorHSV () 
	Color ColorHSV (float hueMin, float hueMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax, float valueMin, float valueMax) 
	Color ColorHSV (float hueMin, float hueMax, float saturationMin, float saturationMax, float valueMin, float valueMax, float alphaMin, float alphaMax) 

	Rotation 
	float RandomDegrees 
	float RandomRadians 
	Quaternion RandomUniformQuaternion 


	 
	Editor Window 
	Demos 
	Random Position Offset 
	Random Points Inside 
	Random Points Inside 2D 

	 
	Help 

